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Abstract. Several exact representations (as an integral and as an infinite series) for the 
partial derivativea[(z, q ) / a z l , = - ,  ofthe generalised Riemannzeta function [ ( z ,  9 )  are given. 

The generalised zeta function i ( z ,  q )  is defined by 

For q = 1, it reduces to the ordinary zeta function l ( z ) :  
3i 

{ ( z ) =  c n-:. 
n = l  

The only derivatives of l( z, q )  which are found in the usual tables are the following [ 11: 

Also interesting is the asymptotic expansion of { ( z ,  q )  for large /q1 and larg q1< T 

For the particular values z = -m,  m = 0, 1, 2, . . . , the function { ( z ,  q )  is given by the 
expression 

where B,(q)  are the Bernoulli polynomials. 
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A very useful integral representation of the generalised zeta function l( z, q ) ,  valid 
for Re q > 0, z # 1, is given by 

From equation (6) one easily sees that l ( z ,  q )  is meromorphic everywhere except for 
one singularity at z = 1 ( a  simple pole with residue 1). A number of different representa- 
tions of l ( z ,  q )  as an integral, a series, or an infinite product can be given [l]. However, 
the integral representation (6) turns out to be most convenient in order to find the 
partial derivative 

( 7 )  

This function turns out to be very important in the effective Lagrangian theory of 
quark confinement [2]. 

a 
d q )  =-l(=, 4 ) / 2 = - , .  az 

Let us find the partial derivative of (6) with respect to z :  

Putting z = -1, we obtain 

Cp(q)=-iq 1ogq++q210gq-aq2  

and making an immediate change of variables in the integrals, we get 

2 tan-' x + x log( 1 + x') 
dx. 

1 Jo e2nqx - 

The first integral is trivial to calculate: 

t d t  1 t d t  1 T' 1 e 2 v r - l - 4 T * l o  er--1-4.1r2 6 - 24 

but the second one 

2 tan-'  x + x log( 1 + x2)  
e2n4r  - 1 

d x  

cannot be computed analytically. It can be written as 
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and, after integrating by parts twice, 

After two more partial integrations, we get 

d x  
(1 + .*)* (1 + x2)3 
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(14) 

and after another two, we get 

dx. (16) 12 16 -2irkqx 

Now, making use of 

" 1 T 2  1 T 4  
-=-=1.6449 c -=-= 1.0823 

k = l  k 2  6 k - 1  k4 90 

and substituting these values into equation ( lo) ,  we obtain 

p ( q )  = 4 q  log q -aq*+;q2 log q+h log q +A 
q>o .  

1 
+y-- 

720q 5040q4 

For q > 1 we find a very strong convergence of these first terms in l /q .  However, we 
must not forget that equation (16) is an identity, valid for any q > 0 (no approximation 
has been carried out yet). The following bound on the higher order terms in (18) is 
thus also general: 

X 12x 

1 
560q4 

<- q > 0. 

Moreover, notice that, in equation (18), the term in q-4 exceeds the term in q-* only 
for 

q'<$ (20) 
which is already a rather small value. Even in this case (20), the higher order terms 
in l / q  compensate to give a contribution subject to the bound (19). 
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Alternatively, an  exact expression in series form can be given for (o (q) .  Let us go 
back to equation ( lo ) ,  with q21( q )  given by equation (14). We find 

x {sin( 2nkq)[47r - Is( 2 nkq )] + cos( 2nkq) IC( 2 7rkq)) (21) 

where Is(t)  and Ic(t)  are the sine and the cosine integral, respectively 

A point to be remarked on is that the expression used for (o(q) has no meaning at  
q = 0. Therefore, the expansion given by (18) is not the best one for q = 0, although-as 
we have already noticed-it is actually valid for every q > O f .  

A different exact expression of (18) as an  infinite series expansion can be given. 
One just has to follow the procedure of partial integration ‘ad injnitum’. The result 
is 

(o(q)=-4qlog q-+q*+tq21og q + & l o g q + A  

where the Bn are Bernoulli numbers. This series does not converge (it is asymptotic, 
for any value of q )  and, therefore, the correct treatment of the function p ( q )  must 
always follow the path of the first procedure, i.e. one must write expressions (14), ( 1 9 ,  
(16) or  (18) to the desired order in l / q  and then find a bound for the remainder, to 
get in this way a conveniently small error. 
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+ The alternative to (18) for q = 0 is presently under investigation. 


