Derivative of the generalised Riemann zeta function $\zeta(z, q)$ at $z=-1$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 181637
(http://iopscience.iop.org/0305-4470/18/10/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:04

Please note that terms and conditions apply.

Derivative of the generalised Riemann zeta function $\boldsymbol{\zeta}(z, q)$ at $z=-1$

Emili Elizalde
Departament de Física Teòrica, Universitat de Barcelona, Diagonal 647, Barcelona-28, Spain

Received 24 October 1984, in final form 21 January 1985

Abstract

Several exact representations (as an integral and as an infinite series) for the partial derivative $\partial \zeta(z, q) /\left.\partial z\right|_{z=-1}$ of the generalised Riemann zeta function $\zeta(z, q)$ are given.

The generalised zeta function $\zeta(z, q)$ is defined by

$$
\begin{equation*}
\zeta(z, q)=\sum_{n=0}^{\infty}(n+q)^{-z} \quad \operatorname{Re} z>1 \quad q \neq 0,-1,-2, \ldots \tag{1}
\end{equation*}
$$

For $q=1$, it reduces to the ordinary zeta function $\zeta(z)$:

$$
\begin{equation*}
\zeta(z)=\sum_{n=1}^{\infty} n^{-z} . \tag{2}
\end{equation*}
$$

The only derivatives of $\zeta(z, q)$ which are found in the usual tables are the following [1]:

$$
\begin{align*}
& \frac{\partial}{\partial q} \zeta(z, q)=-z \zeta(z+1, q) \\
& \left.\frac{\partial}{\partial z} \zeta(z, q)\right|_{z=0}=\log \Gamma(q)-\frac{1}{2} \log (2 \pi) . \tag{3}
\end{align*}
$$

Also interesting is the asymptotic expansion of $\zeta(z, q)$ for large $|q|$ and $|\arg q|<\pi$

$$
\begin{align*}
\zeta(z, q)=\frac{1}{\Gamma(z)} & \left(q^{1-z} \Gamma(z-1)+\frac{1}{2} \Gamma(z) q^{-z}+\sum_{n=1}^{m-1} \frac{B_{2 n}}{(2 n)!}\right. \\
& \left.\times \Gamma(z+2 n-1) q^{-2 n-z+1}\right)+\mathrm{O}\left(q^{-2 m-z-1}\right) . \tag{4}
\end{align*}
$$

For the particular values $z=-m, m=0,1,2, \ldots$, the function $\zeta(z, q)$ is given by the expression

$$
\begin{equation*}
\zeta(-m, q)=-\frac{B_{m+1}(q)}{m+1} \tag{5}
\end{equation*}
$$

where $B_{k}(q)$ are the Bernoulli polynomials.

A very useful integral representation of the generalised zeta function $\zeta(z, q)$, valid for $\operatorname{Re} q>0, z \neq 1$, is given by

$$
\begin{equation*}
\zeta(z, q)=\frac{1}{2} q^{-z}+\frac{q^{1-z}}{z-1}+2 \int_{0}^{\infty}\left(q^{2}+t^{2}\right)^{-z / 2} \sin \left[z \tan ^{-1}\left(\frac{t}{q}\right)\right] \frac{\mathrm{d} t}{\mathrm{e}^{2 \pi t}-1} . \tag{6}
\end{equation*}
$$

From equation (6) one easily sees that $\zeta(z, q)$ is meromorphic everywhere except for one singularity at $z=1$ (a simple pole with residue 1). A number of different representations of $\zeta(z, q)$ as an integral, a series, or an infinite product can be given [1]. However, the integral representation (6) turns out to be most convenient in order to find the partial derivative

$$
\begin{equation*}
\left.\varphi(q) \equiv \frac{\partial}{\partial z} \zeta(z, q)\right|_{z=-1} . \tag{7}
\end{equation*}
$$

This function turns out to be very important in the effective Lagrangian theory of quark confinement [2].

Let us find the partial derivative of (6) with respect to z :

$$
\begin{align*}
\frac{\partial}{\partial z} \zeta(z, q)=- & -\frac{1}{2} q^{-z} \log q-\frac{q^{1-z}}{z-1} \log q-\frac{q^{1-z}}{(z-1)^{2}} \\
& +2 \int_{0}^{x}\left(q^{2}+t^{2}\right)^{-z / 2} \cos \left[z \tan ^{-1}\left(\frac{t}{q}\right)\right] \tan ^{-1}\left(\frac{t}{q}\right) \frac{\mathrm{d} t}{\mathrm{e}^{2 \pi t}-1} \\
& -\int_{0}^{x}\left(q^{2}+t^{2}\right)^{-z / 2} \log \left(q^{2}+t^{2}\right) \sin \left[z \tan ^{-1}\left(\frac{t}{q}\right)\right] \frac{\mathrm{d} t}{\mathrm{e}^{2 \pi t}-1} . \tag{8}
\end{align*}
$$

Putting $z=-1$, we obtain
$\varphi(q)=-\frac{1}{2} q \log q+\frac{1}{2} q^{2} \log q-\frac{1}{4} q^{2}$

$$
\begin{equation*}
+2 q \int_{0}^{\infty} \tan ^{-1}\left(\frac{t}{q}\right) \frac{\mathrm{d} t}{\mathrm{e}^{2 \pi t}-1}+\int_{0}^{\infty} t \log \left(q^{2}+t^{2}\right) \frac{\mathrm{d} t}{\mathrm{e}^{2 \pi t}-1} \tag{9}
\end{equation*}
$$

and making an immediate change of variables in the integrals, we get

$$
\begin{gather*}
\varphi(q)=-\frac{1}{2} q \log q-\frac{1}{4} q^{2}+\frac{1}{2} q^{2} \log q+2 \log q \int_{0}^{x} \frac{t \mathrm{~d} t}{\mathrm{e}^{2 \pi t}-1} \\
+q^{2} \int_{0}^{x} \frac{2 \tan ^{-1} x+x \log \left(1+x^{2}\right)}{\mathrm{e}^{2 \pi q x}-1} \mathrm{~d} x . \tag{10}
\end{gather*}
$$

The first integral is trivial to calculate:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{t \mathrm{~d} t}{\mathrm{e}^{2 \pi t}-1}=\frac{1}{4 \pi^{2}} \int_{0}^{\infty} \frac{t \mathrm{~d} t}{\mathrm{e}^{t}-1}=\frac{1}{4 \pi^{2}} \frac{\pi^{2}}{6}=\frac{1}{24} \tag{11}
\end{equation*}
$$

but the second one

$$
\begin{equation*}
I(q) \equiv \int_{0}^{\infty} \frac{2 \tan ^{-1} x+x \log \left(1+x^{2}\right)}{\mathrm{e}^{2 \pi q x}-1} \mathrm{~d} x \tag{12}
\end{equation*}
$$

cannot be computed analytically. It can be written as

$$
\begin{equation*}
I(q)=\sum_{k=1}^{x} \int_{0}^{x}\left[2 \tan ^{-1} x+x \log \left(1+x^{2}\right)\right] \mathrm{e}^{-2 \pi k q x} \mathrm{~d} x \quad q>0 \tag{13}
\end{equation*}
$$

and, after integrating by parts twice,

$$
\begin{equation*}
I(q)=\frac{1}{2 \pi^{2} q^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{1}{2 \pi^{2} q^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \int_{0}^{\infty} \frac{x \mathrm{e}^{-2 \pi k q x}}{1+x^{2}} \mathrm{~d} x . \tag{14}
\end{equation*}
$$

After two more partial integrations, we get

$$
\begin{align*}
& q^{2} I(q)=\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{1}{8 \pi^{4} q^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{4}} \\
&+\frac{1}{4 \pi^{4} q^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{4}} \int_{0}^{\infty}\left(\frac{1}{\left(1+x^{2}\right)^{2}}-\frac{4}{\left(1+x^{2}\right)^{3}}\right) x \mathrm{e}^{-2 \pi k q x} \mathrm{~d} x \tag{15}
\end{align*}
$$

and after another two, we get

$$
\begin{align*}
& q^{2} I(q)=\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{1}{8 \pi^{4} q^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{4}}-\frac{3}{16 \pi^{6} q^{4}} \sum_{k=1}^{\infty} \frac{1}{k^{6}} \\
&+\frac{3}{4 \pi^{6} q^{4}} \sum_{k=1}^{\infty} \frac{1}{k^{6}} \int_{0}^{\infty}\left(\frac{1}{\left(1+x^{2}\right)^{3}}-\frac{12}{\left(1+x^{2}\right)^{4}}+\frac{16}{\left(1+x^{2}\right)^{5}}\right) x \mathrm{e}^{-2 \pi k q x} \mathrm{~d} x \tag{16}
\end{align*}
$$

Now, making use of

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}=1.6449 \quad \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}=1.0823 \\
& \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}=1.0173 \tag{17}
\end{align*}
$$

and substituting these values into equation (10), we obtain

$$
\begin{align*}
& \varphi(q)=-\frac{1}{2} q \log q-\frac{1}{4} q^{2}+\frac{1}{2} q^{2} \log q+\frac{1}{12} \log q+\frac{1}{12} \\
&+\frac{1}{720 q^{2}}-\frac{1}{5040 q^{4}}+\mathrm{O}\left(\frac{1}{q^{6}}\right) \quad q>0 \tag{18}
\end{align*}
$$

For $q>1$ we find a very strong convergence of these first terms in $1 / q$. However, we must not forget that equation (16) is an identity, valid for any $q>0$ (no approximation has been carried out yet). The following bound on the higher order terms in (18) is thus also general:

$$
\begin{gather*}
\mathrm{O}\left(\frac{1}{q^{6}}\right) \equiv \frac{3}{4 \pi^{6} q^{4}} \sum_{k=1}^{\infty} \frac{1}{k^{6}} \int_{0}^{\infty}\left(\frac{1}{\left(1+x^{2}\right)^{3}}-\frac{12}{\left(1+x^{2}\right)^{4}}+\frac{16}{\left(1+x^{2}\right)^{5}}\right) x \mathrm{e}^{-2 \pi k q x} \mathrm{~d} x \\
\quad<\frac{3}{4 \pi^{6} q^{4}} \sum_{k=1}^{\infty} \frac{1}{k^{6}} \int_{0}^{\infty}\left(\frac{x}{\left(1+x^{2}\right)^{3}}+\frac{12 x}{\left(1+x^{2}\right)^{4}}+\frac{16 x}{\left(1+x^{2}\right)^{5}}\right) \mathrm{d} x \\
\quad<\frac{1}{560 q^{4}} \quad q>0 \tag{19}
\end{gather*}
$$

Moreover, notice that, in equation (18), the term in q^{-4} exceeds the term in q^{-2} only for

$$
\begin{equation*}
q^{2}<\frac{1}{7} \tag{20}
\end{equation*}
$$

which is already a rather small value. Even in this case (20), the higher order terms in $1 / q$ compensate to give a contribution subject to the bound (19).

Alternatively, an exact expression in series form can be given for $\varphi(q)$. Let us go back to equation (10), with $q^{2} I(q)$ given by equation (14). We find

$$
\begin{align*}
& \varphi(q)=-\frac{1}{2} q \log q-\frac{1}{4} q^{2}+\frac{1}{2} q^{2} \log q+\frac{1}{12} \log q+\frac{1}{12}+\frac{1}{2 \pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \\
& \times\left\{\sin (2 \pi k q)\left[\frac{1}{2} \pi-\mathrm{Is}(2 \pi k q)\right]+\cos (2 \pi k q) \operatorname{Ic}(2 \pi k q)\right\} \tag{21}
\end{align*}
$$

where $\operatorname{Is}(t)$ and $\operatorname{Ic}(t)$ are the sine and the cosine integral, respectively

$$
\begin{equation*}
\operatorname{Is}(t)=\int_{0}^{t} \frac{\sin u}{u} \mathrm{~d} u \quad \operatorname{Ic}(t)=\int_{t}^{+\infty} \frac{\cos u}{u} \mathrm{~d} u . \tag{22}
\end{equation*}
$$

A point to be remarked on is that the expression used for $\varphi(q)$ has no meaning at $q=0$. Therefore, the expansion given by (18) is not the best one for $q \simeq 0$, although-as we have already noticed-it is actually valid for every $q>0 \dagger$.

A different exact expression of (18) as an infinite series expansion can be given. One just has to follow the procedure of partial integration 'ad infinitum'. The result is

$$
\begin{align*}
& \varphi(q)=-\frac{1}{2} q \log q-\frac{1}{4} q^{2}+\frac{1}{2} q^{2} \log q+\frac{1}{12} \log q+\frac{1}{12} \\
&-\sum_{n=1}^{m} \frac{B_{2 n+2}}{(2 n+2)(2 n+1) 2 n} q^{-2 n}+\mathrm{O}\left(q^{-(2 m+2)}\right) \tag{23}
\end{align*}
$$

where the B_{n} are Bernoulli numbers. This series does not converge (it is asymptotic, for any value of q) and, therefore, the correct treatment of the function $\varphi(q)$ must always follow the path of the first procedure, i.e. one must write expressions (14), (15), (16) or (18) to the desired order in $1 / q$ and then find a bound for the remainder, to get in this way a conveniently small error.

References

[1] Magnus W, Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Functions of Mathematical Physics (Berlin: Springer) 3rd edn, pp 22-5
Erdélyi A (ed) 1953 Higher Transcendental Functions vol I (New York: McGraw-Hill) pp 24-7
Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series, and Products (New York: Academic) 4th edn, pp 1072-4
[2] Dittrich W and Reuter M 1983 Phys. Lett. 128B 321-6

[^0]
[^0]: + The alternative to (18) for $q=0$ is presently under investigation.

